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Abstract. Inclusive cross sections for Higgs boson production in proton–proton collisions are calculated in
the formalism of unintegrated gluon distributions (UGDFs). Different UGDFs from the literature are used.
Although they were constructed in order to describe the HERA deep-inelastic scattering F2 data, they lead
to surprisingly different results for Higgs boson production. We present both the two-dimensional invariant
cross section as a function of Higgs boson rapidity and transverse momentum, as well as the corresponding
projections on rapidity or transverse momentum. We quantify the differences between different UGDs by
applying different cuts on interrelations between the transverse momentum of the Higgs and the transverse
momenta of both fusing gluons. We focus on the large rapidity region. The interplay of the gluon–gluon
fusion and weak-boson fusion in rapidity and transverse momentum is discussed. We find that above
pt ∼ 50–100 GeV the weak-gauge boson fusion dominates over gluon–gluon fusion.
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1 Introduction

Recently unintegrated gluon (parton) distributions became
a useful and intuitive phenomenological language for ap-
plications to many high-energy reactions (see e.g. [1,2] and
references therein). Mostly the HERA F2 data were used to
test or tune different models of UGDFs. However, the struc-
ture function data are not the best tool to verify UGDF, in
particular its dependence on gluon transverse momentum,
because it enters in the γ∗p total cross section in an inte-
grated way. UGDFs have been used recently to describe
jet correlations [3], correlations in heavy quark photopro-
duction [4], total cross section for Higgs production [5],
inclusive spectra of pions in proton–proton collisions [6] or
even nucleus–nucleus collisions [7]. It is rather obvious that
differential cross sections seem a much better tool than the
total or integrated cross sections to verify UGDFs.

Many unintegrated gluon distributions in the literature
are ad hoc parametrizations of different sets of experimen-
tal data rather than derived from QCD. An example of a
more systematic approach, making use of familiar collinear
distributions can be found in [8]. Recently Kwieciński and
collaborators [9–11] have shown how to solve the so-called
CCFM equations by introducing unintegrated parton dis-
tributions in the space conjugated to the transverse mo-
menta [9]. We present results for inclusive Higgs produc-
tion based on unintegrated gluon distributions obtained
by solving a set of coupled equations [11]. Recently these
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parton distributions were tested for inclusive gauge bo-
son production in proton–antiproton collisions [12] and for
charm–anticharm correlations in photoproduction [4].

While in the gauge boson production one tests mainly
quark and antiquark (unintegrated) distributions at scales
µ2 ∼ M2

W , M2
Z , in the charm-quark photoproduction one

tests mainly gluon distributions at scales µ2 ∼ m2
c . The

non-perturbative aspect of UPDFs can be tested for soft
pion production in proton–proton collisions [13].

Different ideas based on perturbative and non-
perturbative QCD have been used in the literature to
obtain the unintegrated gluon distributions in the small-
x region. Since almost all of them were constructed to
describe the HERA data it is necessary to test these dis-
tributions in other high-energy processes in order to verify
the underlying concepts and/or approximations applied. It
is the aim of this paper to show predictions of these quite
different UGDFs for Higgs production at LHC at CERN
although we are aware of the fact that a real test against
future experimental data may be extremely difficult. We
compare and analyze two-dimensional distributions for
inclusive Higgs production in rapidity and transverse mo-
mentum (y, pt) to study the potential for such an analysis
in the future. We focus not only on midrapidities but also
try to understand the potential for studying UGDFs in
more forward or backward rapidity regions. The results
of the gluon–gluon fusion are compared with other mech-
anisms of Higgs boson production such as WW fusion
for instance.
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Fig. 1. Dominant leading-
order diagram for inclusive
Higgs production for pt � MH

2 Formalism

There are several mechanisms of the Higgs boson produc-
tion which have been discussed in the literature. Provided
that the Higgs mass is larger than 100 GeV and smaller
than 600 GeV the gluon–gluon fusion (see Fig. 1) is the
dominant mechanism of Higgs boson production at LHC
energies [14]. The WW and ZZ fusion is the second im-
portant mechanism for the light-Higgs scenario. Often the
so-called associated Higgs boson production (HW , HZ or
Htt̄) is considered as a good candidate for the discovery of
the Higgs boson. The contribution of the associated pro-
duction to the inclusive cross section is, however, rather
small. In the present paper we concentrate on the inclu-
sive cross section and in particular on its dependence on
rapidity and/or transverse momentum of the Higgs boson.

2.1 Gluon–gluon fusion

In the leading-order collinear factorization approach the
Higgs boson has a zero transverse momentum. In the
collinear approach the finite transverse momenta are gen-
erated only at next-to-leading order. However, the fixed-
order approach is not useful for small transverse momenta
and rather a resummation method must be used [16]. Re-
cently Kwieciński, starting from the CCFM equation [15],
has proposed a new method of resummation [17] based on
unintegrated gluon distributions.

Limiting ourselves to small transverse momenta of the
Higgs boson, i.e. small transverse momenta of the fusing
gluons, the on-shell approximation for the matrix element
seems a good approximation. There are also some technical
reasons, to be discussed later, to stay with the on-shell ap-
proximation. In the on-shell approximation for the gg → H
transition matrix element1 the leading-order cross section
in the unintegrated gluon distribution formalism reads2

1 There is disagreement in the literature [19, 20] on how to
include the off-shell effects.

2 Some of the UGDFs from the literature depend only on the
longitudinal momentum fraction and the transverse momentum
of the virtual gluon. To keep the formulae below general we
allow for a scale parameter needed in some distributions.

dσH

dyd2pt

= σgg→H
0

∫
fg/1

(
x1, κ

2
1, µ

2)fg/2
(
x2, κ

2
2, µ

2)

×δ2 (κ1 + κ2 − pt)
d2κ1

π
d2κ2

π
. (1)

In the equation above the delta function assures conser-
vation of transverse momenta in the gluon–gluon fusion
subprocess. The 1/π factors are due to the definition of
UGDFs. The momentum fractions should be calculated as
x1,2 = mt,H√

s
exp(±y), where in comparison to the collinear

case MH is replaced by the Higgs transverse mass mt,H . If
we neglect transverse momenta and perform the following
formal substitutions:

fg/1
(
x1, κ

2
1, µ

2) → x1g1
(
x1, µ

2) δ
(
κ2

1
)

,

fg/2
(
x2, κ

2
2, µ

2) → x2g2
(
x2, µ

2) δ
(
κ2

2
)

, (2)

then we recover the well known leading-order formula

dσH

dyd2pt
= σgg→H

0 x1g1
(
x1, µ

2) x2g2
(
x2, µ

2) δ2 (pt) . (3)

The off-shell effects could be taken into account by in-
serting the γ∗γ∗ → H off-shell cross section (corresponding
to the matrix element squared |Mgg→H(κ1,κ2)|2) under
the integral in the formula (1) above. This will be discussed
in more detail in a separate section.

There are a few conventions for UGDF in the literature.
In the convention used throughout the present paper the
unintegrated gluon distributions have dimension of GeV−2

and fulfill the approximate relation

∫ µ2

0
fg

(
x, κ2 (

, µ2)) dκ2 ≈ xgcoll
(
x, µ2) , (4)

where gcoll(x, µ2) is the familiar conventional (integrated)
gluon distribution. The scale µ2 in the UGDF above is
optional. In the effective Lagrangian approximation and
assuming infinitely heavy top quark the cross section pa-
rameter σgg→H

0 is given by [29]

σgg→H
0 =

√
2GF

576π
α2

s
(
µ2

r

)
. (5)

In the following we shall take µ2
r = M2

H . Above we have
assumed implicitly that the fusing gluons are on-mass-shell.
In general, the fusing gluons are off-mass-shell. This effect
was analyzed in detail in the production of Higgs associated
with two jets [30]. The effect found there is small provided
MH < 2mt.

The UGDFs are the main ingredients in evaluating the
inclusive cross section for Higgs production. Depending
on the approach, some UGDFs [7,24–26] in the literature
depend on two variables, longitudinal momentum fraction
x and transverse momentum κ2; some in addition depend
on a scale parameter [8–10,27]. In the latter case the scale
µ2 is taken here as M2

H or ξM2
H , where ξ is some factor.
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The seemingly 4-dimensional integrals in (1) can be
written as 2-dimensional integrals after a suitable change
of the variables κ1,κ2 → pt, qt, where pt = κ1 + κ2 and
qt = κ1 − κ2. Then

dσH

dyd2pt
(6)

=
σgg→H

0

(2π)2

∫
fg/1

(
x1, κ

2
1, µ

2)fg/2
(
x2, κ

2
2, µ

2)d2qt ,

where κ1 = pt/2 + qt/2 and κ2 = pt/2 − qt/2. The in-
tegrand of this “reduced” 2-dimensional integral in qt =
κ1 − κ2 is generally a smooth function of qt and corre-
sponding azimuthal angle φqt .

2.1.1 Unintegrated gluon distributions

In the present analysis we shall use different unintegrated
gluon distributions from the literature. We include gluon
distributions corresponding to a simple saturation model
used by Golec-Biernat and Wüsthoff to describe the HERA
deep-inelastic data [24] (GBW), a saturation model of
Kharzeev and Levin used to describe rapidity distributions
of charged particles [7] (KL)3, the Balitskij–Fadin–Kuraev–
Lipatov (BFKL)-type UGDF [25] and three other distri-
butions in the transverse-momentum space [8,27] (KMR)
and [26] as well as the Kwieciński UGDF in the b-space. A
more detailed description of almost all distributions men-
tioned above can be found e.g. in [6]. The Kwieciński UGDF
as the only one defined in the b-space requires a separate
discussion. It will be shown below that the formulae for
the inclusive cross section for Higgs boson production via
gluon–gluon fusion can be written in an equivalent way
also in terms of distributions in the b-space.

2.1.2 Kwieciński gluon distribution
and the inclusive cross section

Taking the following representation of the δ function:

δ2 (κ1 + κ2 − pt) =
1

(2π)2

∫
d2b exp [(κ1 + κ2 − pt)b] ,

(7)
(6) can be written in an equivalent way in terms of gluon
distributions in the space conjugated to the gluon trans-
verse momentum4

dσH

dyd2pt
(8)

= σgg→H
0

∫
f̃g/1

(
x1, b, µ

2) f̃g/2(x2, b, µ
2)J0(ptb)2πbdb ,

3 The normalization of the gluon distributions was fixed in [6]
to reproduce the HERA data.

4 The simple form of the formula below would not be possible
with off-shell effects, i.e. when |Mgg→H |2 is a function of κ1

and κ2.

where

f̃g

(
x, b, µ2) =

∫ ∞

0
dκtκtJ0(κtb)fg

(
x, κ2

t , µ
2) . (9)

For most of the unintegrated gluon distributions (6) is
used. Equation (8) is used when applying the Kwieciński
unintegrated distributions obtained as a solution of his
equations in the b-space. The b-space approach pro-
posed by Kwieciński is very convenient to introduce the
non-perturbative effects like intrinsic (non-perturbative)
transverse-momentum distributions of partons in nucleons.
It seems reasonable, at least in a first approximation, to
include the non-perturbative effects in the factorizable way:

f̃g

(
x, b, µ2) = f̃CCFM

g

(
x, b, µ2) · FNP

g (b) . (10)

The form factor responsible for the non-perturbative effects
must be normalized such that

FNP
g (b = 0) = 1 . (11)

Then by construction

f̃g

(
x, b = 0, µ2) =

x

2
g

(
x, µ2) . (12)

In the following, for simplicity, we use an x-independent
form factor

FNP
g (b) = exp

(
− b2

4b2
0

)
, (13)

which is responsible for the non-perturbative effects. The
Gaussian form factor in b means also a Gaussian initial mo-
mentum distribution exp(−k2

t b
2
0) (the Fourier transform of

a Gaussian function is a Gaussian function). A Gaussian
form factor is often used to correct collinear pQCD calcu-
lations for so-called intrinsic momenta. Other functional
forms in b are also possible.

The similarities and differences between the standard
soft gluon resummation and the CCFM resummation have
been discussed recently in [17]. It has been shown how
the soft gluon resummation formulae can be obtained as a
result of the approximate treatment of the solution of the
CCFM equation in the so-called b-representation.

2.1.3 Off-shell matrix element for g∗g∗ → H

While in the collinear approach the off-shell matrix ele-
ments are needed only at higher orders [19], in the kt-
factorization approach the off-shell matrix elements ap-
pear in principle already at the leading order. In [19] the
matrix element was calculated in the framework of the ef-
fective Lagrangian for the Higgs boson coupling to gluons
in the infinitely heavy top mass approximation. While the
on-mass-shell couplings in the full theory and in the effec-
tive Lagrangian theory are equivalent, this is not expected
for matrix element with off-shell gluons. In particular, the
dependence on the transverse momenta and their relative
orientation can be different. The use of the effective vertex
all over the phase space may not be completely realistic.
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Fig. 2. The ratio R as a function
of Higgs transverse momentum for
the full range of Higgs rapidity.
The thick dashed line corresponds
to neglecting the function λ, i.e.
assuming λ = 1. The solid line
was obtained with the Hautmann
prescription of the flux factor [19]
while the dash-dotted line is based
on the formula from [20]. In this
calculation the BFKL UGDF was
used as an example

However, the matrix element in the full theory (with finite
top mass) has not yet been calculated.

In the present paper we shall only estimate the off-shell
effects in the effective Lagrangian approximation. Then the
cross section for the Higgs production can be written as

dσH

dyd2pt
=

σgg→H
0

(2π)2

∫
fg/1

(
x1, κ

2
1, µ

2)fg/2
(
x2, κ

2
2, µ

2)

× 2
(κ1 · κ2)2

κ2
1κ

2
2

λ
(
κ2

1, κ
2
2, p

2
t
)

d2qt , (14)

where λ is a smooth function of its parameters [19, 20].
In the limit p2

t → 0, κ2
1 → 0, κ2

2 → 0 the dimensionless
function λ(κ2

1, κ
2
2, p

2
t ) → 1. Then the 2 cos2 φκ1,κ2 factor

in the formula above constitutes the essential difference
with respect to the on-shell approximation. It modifies the
dependence of the integrand under the φq integration.

In Fig. 2 we show the ratio

R =
(dσ/dpt)off-shell

(dσ/dpt)on-shell
(15)

as a function of the Higgs-boson transverse momentum. In
this calculation the BFKL unintegrated gluon distributions
have been used as an example. The result for other distri-
butions is similar. The final effect is rather small (less than
10%) in the region of our interest and depends on the way
how the flux factor for off-shell gluons is defined [19,20]5.
At finite, but not too large, Higgs boson transverse mo-
menta the averaging over gluon transverse momenta with
UGDFs gives 〈2 cos2 φκ1,κ2〉 ≈ 1, and one approximately
recovers the on-shell result. This is not true for pt ≈ 0, when
κ1 and κ2 are strongly anticorrelated and the averaging is
not efficient. The off-shell effect on the integrated cross sec-
tion (dσ/dy) is even smaller. Here we wish to concentrate
rather on the effect of the transverse momenta inherent
for UGDFs. We shall leave a detailed study of the off-shell
effects in the effective Lagrangian and in the full theory
for the future and consequently we shall use the on-shell
matrix element in the following. This approximation will
be also useful here when comparing the kt-factorization
results with that for the standard collinear and soft gluon

5 While it is rather straightforward to calculate the matrix
element for off-shell gluons, there is some ambiguity in defining
the flux factor for virtual gluons.

resummation approaches. The on-shell approximation was
used recently in the formalism od doubly unintegrated par-
ton distribution for electroweak boson production [18].

2.1.4 Standard soft gluon resummation

The formula for inclusive cross section in terms of uninte-
grated gluon distributions in the impact parameter space
looks very similar to the one in the standard soft gluon re-
summation approach known from the literature. This sim-
ilarity is not random [17]. In the Collins–Soper–Sterman
(CSS) approach [16] the resummed cross section for Higgs
production reads

dσ

dyd2pt,H

=
σgg→H

0

(2π)2

∫
d2bJ0(ptb)WNP

gg

(
b, x1, x2, µ

2)

×x1 ·

g1(x1, µ(b)) +

αs(µ(b))
2π

Cvcg1(x1, µ(b))

+
αs(µ(b))

2π

∑
f1

(
Cgq ⊗ qf1

1

)
(x1, µ(b))




×x2 ·

g2(x2, µ(b)) +

αs(µ(b))
2π

Cvcg2(x2, µ(b))

+
αs(µ(b))

2π

∑
f2

(
Cgq ⊗ qf2

2

)
(x2, µ(b))




× exp
[

1
2

(
Sg

(
b, µ2) + Sg

(
b, µ2))] , (16)

where the exponents in the Sudakov-like form factors read

Sg

(
b, µ2) = −

∫ µ2

µ̄2
min(b)

dµ̄2

µ̄2 (17)

×
[
ln

(
µ2

µ̄2

)
Ag

(
αs

(
µ̄2)) + Bg

(
αs

(
µ̄2))] .

The coefficient functions C in (16) can be found in [21].
The coefficients A and B in the Sudakov-like form factor
can be expanded in a series of αs:

Ag = 2CA
αs(µ̄)

2π
+

(
αs(µ̄)

2π

)2

(. . .) + . . . ,

Bg = −2β0
αs(µ̄)

2π
+

(
αs(µ̄)

2π

)2

(. . .) + . . . , (18)

where β0 = 11
6 CA − 2

3 NF TR (TR = 1
2 , NF = 5, CA = 3).

The CSS formalism [16] leaves open the question of small
b. Different prescriptions have been proposed to treat this
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region. The lower limit of the integral in (17) is usually
taken µ2

min(b) =
(

Cb

b

)2
, where Cb = 2 exp(−γE) ≈ 1.1229.

This prescription leads to a kink for the Sudakov form
factor if Cb/b = µ. To allow for a smooth dependence and to
guarantee that the lower limit is really lower than the upper
limit, one could make the following replacement µ2

min(b) =(
Cb

b

)2 → (
Cb

b

)2 [
1 + C2

b /(b2µ2)
]−1. To guarantee that the

scale of parton distribution does not take an unphysically
small value we shall use the following prescription:

µ2(b) = µ2
min(b) + µ2

0 , (19)

where µ2
0 is the starting value for the QCD evolution. In

the present paper we shall use easy to handle leading-order
parton distributions from [28].

WNP
gg (b, x1, x2, µ

2) in (16) is of non-perturbative origin.
Different effective parametrizations have been proposed in
the literature. Assuming a factorizable form of the WNP

gg

function

WNP
gg

(
b, x1, x2, µ

2) = FNP
g

(
b, x1, µ

2) · FNP
g

(
b, x2, µ

2) ,
(20)

the soft gluon resummation formula (16) and the uninte-
grated gluon distribution formula (8) for Higgs production
in the b-space have an identical structure if the following
formal assignment is made:

f̃SGR
g

(
x, b, µ2) =

1
2

FNP
g

(
b, x, µ2) [

xg
(
x, µ2(b)

)
+ . . .

]

× exp
(

1
2

Sg

(
b, µ2)) . (21)

If the off-shell matrix element for gg → H is taken
in the UGDF approach with the Kwieciński distribution,
the structure of the formula in both approaches would be
different. In this sense the UGDF approach seems more
general than the b-space resummation method.

2.2 2 → 2 processes

At sufficiently large transverse momenta (pt > MH) the
Higgs boson production of the type 2 → 2 should dominate
over the 2 → 1 mechanism discussed above. The cross
section for fixed-order processes of the type p1p2 → Hp3
(parton + parton → Higgs + parton) of the order of αs is
well known [31]:

dσ

dyHdypd2pt
(yW , yp, pt) (22)

=
1

16π2ŝ2


x1g1

(
x1, µ

2) x2g2
(
x2, µ

2) |Mgg→Hg|2

+


 ∑

f1=−3,3

x1q1,f1

(
x1, µ

2)

 x2g2

(
x2, µ

2) |Mqg→Hq|2

+x1g1
(
x1, µ

2)

 ∑

f2=−3,3

x2q2,f2

(
x2, µ

2)

 |Mgq→Hq|2

+
∑

f=−3,3

x1q1,f

(
x1, µ

2) x2q2,−f

(
x2, µ

2) |Mqq→Hg|2

 .

The indices f in the formula above number both quarks
(f > 0) and antiquarks (f < 0). Only three light flavors are
included in the actual calculations. The explicit formulae
for |M|2 can be found in [31].

2.3 Weak-boson fusion

Up to now we have discussed only the contribution of the
dominant LO gluon–gluon fusion and NLO 2 → 2 correc-
tions and completely ignored contributions of other pro-
cesses. The second most important mechanism for Higgs
production is the fusion of off-shell gauge bosons: WW
or ZZ. It is known that at LHC energy and intermediate
mass (100 GeV < MH < 500 GeV) Higgs the WW fusion
constitutes about 10–15% of the integrated inclusive cross
section. If the weak-boson fusion contribution was sepa-
rated, the measurement of the WWH (or ZZH) coupling
would be very interesting test of the standard model.

Previous studies of the WW mechanism concentrated
on the total cross section for the Higgs production. In the
present paper we are interested in differential distributions
of the Higgs boson rather than in the integrated cross sec-
tion.

For the gauge boson fusion the partonic subprocess is
of the 2 → 3 type: q(p1) + q(p2) → q(p3) + q(p4) + H(pH).
The corresponding hadronic cross section can be written as

dσ = FV V
12 (x1, x2)

1
2ŝ

|Mqq→qqH |2

× d3p3

(2π)3 2E3

d3p4

(2π)3 2E4

d3pH

(2π)3 2EH

(23)

× (2π)4 δ4(p1 + p2 − p3 − p4 − pH)dx1dx2 .

The next-to-leading order corrections to the matrix element
of the WW fusion are rather small [32]. For comparison
the NLO corrections for gluon–gluon fusion are significantly
larger. Since we wish to concentrate on relative effects of
the gluon–gluon and WW fusion contributions in the fol-
lowing we restrict ourselves to a much simpler leading-order
(LO) calculation. The LO subprocess matrix element was
calculated first in [33]. The spin averaged matrix element
squared reads

|M|2 = 128
√

2G3
F

M8
W (p1 · p2)(p3 · p4)

(2p3 · p1 + M2
W )2 (2p4 · p2 + M2

W )2
.

(24)
For the WW fusion, limiting ourselves to light flavors, the
partonic function is

FWW
12 (x1, x2)

=
(
u1

(
x1, µ

2
1
)

+ d̄1
(
x1, µ

2
1
)

+ s̄1
(
x1, µ

2
1
))

× (
ū2

(
x2, µ

2
2
)

+ d2
(
x2, µ

2
2
)

+ s2
(
x2, µ

2
2
))
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+
(
ū1

(
x1, µ

2
1
)

+ d1
(
x1, µ

2
1
)

+ s1
(
x1, µ

2
1
))

(25)

× (
u2

(
x2, µ

2
2
)

+ d̄2
(
x2, µ

2
2
)

+ s̄2
(
x2, µ

2
2
))

.

We take either
(i) µ2

1 = µ2
2 = M2

H or
(ii) µ2

1 = −t1, µ
2
2 = −t2, where t1 and t2 are the virtualities

of the W bosons. It is convenient to introduce the following
new variables:

p+ = p3 + p4 ,

p− = p3 − p4 , (26)

which allow one to eliminate the momentum-dependent
δ3(. . .) in (23). Instead of integrating over x1 and x2 we shall
integrate over y1 ≡ ln(1/x1) and y2 ≡ ln(1/x2). Then using
(23) we can write the inclusive spectrum of the Higgs as

dσ

dyd2pt
(27)

=
∫

dy1dy2x1x2F
(
x1, x2, µ

2
1, µ

2
2
) 1

2ŝ

d3p−
16

|Mqq→qqH |2

× 1
2E3

1
2E4

1
(2π)5

δ(E1 + E2 − E3 − E4 − EH) .

This is effectively a four-dimensional integral which can be
easily calculated numerically.

3 Results

3.1 Gluon–gluon fusion

Since we wish to concentrate on the potential to verify
different UGDFs rather than to present the best predictions
for LHC experiments we shall consider only one mass of
the Higgs boson, MH = 125 GeV, as an example. This is
slightly above the lower limit obtained from the analysis of
the LEP data [34]. In addition, this is a mass for which many
calculations in the literature have been performed recently.
Therefore this gives an opportunity for comparison to the
existing results.

Before we go to the analysis of the two-dimensional
spectra of the Higgs boson produced in proton–proton or
proton–antiproton collisions let us show the range of the
gluon longitudinal momentum fraction tested in these pro-
cesses. In Fig. 3 we present respectively x1 and x2 as a
function of Higgs boson rapidity for a few different values
of Higgs transverse momentum. While at Tevatron energies
(panel (a)) only intermediate and large xs come into the
game, in collisions at LHC energy (panel (b)) x ∼ 10−2 is
sampled at midrapidity. However, at LHC energy, at ra-
pidities |y| > 2 one enters the region of x > 0.1. Here some
of the low-x models of UGDFs may become invalid.

Let us concentrate first on the transverse-momentum
distributions. The distribution of the Higgs transverse mo-
mentum (rapidity integrated) is shown in Fig. 4. In Fig. 5
we present the transverse-momentum distribution of the

Higgs boson in different bins of rapidity specified in the

a b

Fig. 3. x1 and x2 as a function of Higgs rapidity y for pt = 0.
In panel a for Tevatron energy

√
s = 2 TeV and in panel b for

LHC energy
√

s = 14 TeV

Fig. 4. Transverse momentum dis-
tribution of Higgs boson at LHC
energy W = 14 TeV for differ-
ent UGDFs from the literature:
solid lines for the Kwieciński, thick
dashed lines for the KL, thin
dashed lines for the GBW, and the
dash-dotted lines for the BFKL one

Fig. 5. Transverse momentum distribution of Higgs boson at
LHC energy W = 14 TeV and y = 0 (left panel) and y = ±3
(right panel) for different UGDFs from the literature. The
notation here is the same as in the previous figure. In addition
to the previous figure we present results for the KMR (dotted),
the Kutak–Staśto (grey dash-dotted) and the Bluemlein (thin
solid) UGDF

figure caption. At midrapidity (panel (a)) only small xs
are sampled. Even here different models from the liter-
ature give quite different transverse-momentum distribu-
tions, although all of them give a reasonable description of
the HERA data. The LO soft gluon resummation distri-
bution and the distribution obtained with the Kwieciński
unintegrated gluon distribution (b0 = 1 GeV−1) are very
similar with maxima at pt,H ≈ 10 GeV and pt,H ≈ 5 GeV,
respectively. The cross section for W or Z production is
fairly sensitive to the choice of the non-perturbative form
factor [12]. In contrast to the gauge boson production the
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Higgs boson production is much less sensitive to the param-
eter of the Gaussian form factor. The results with b0 = 0.5
or 2 GeV−1 (not shown here) almost coincide with the re-
sult for b0 = 1 GeV−1. Therefore in the following in all
calculations we shall use b0 = 1 GeV−1. The BFKL-type
gluon distributions lead to a much larger cross section
at small Higgs transverse momenta and a sizeably larger
slope of the pt-distribution. The rapid fall-off of the cross
section for the Golec-Biernat–Wüsthoff non-perturbative
gluon distribution [24] (thin dashed curve) demonstrates
how important the perturbative initial state radiation is in
generating larger transverse momenta of the Higgs boson.
Such effects are not taken into account in [24].

A comment regarding the GBW distribution is here
in order. This distribution was obtained based on a sim-
ple dipole parametrization of the HERA data inspired by
the saturation idea. In addition to the very steep distribu-
tion in the Higgs-boson transverse momentum the scale-
independent GBW gluon distribution gives a very small
total cross section (about half of 1 pb). One has to remem-
ber, however, that this distribution was constructed in or-
der to describe σtot

γ∗p(Q2) for small photon virtualities. We
wish to stress here that this distribution is not an universal
object. For example in its simplest form it fails to describe
σtot

γ∗p(Q2) for large photon virtualities. The corresponding
effective gluon distribution defined as

xgGBW(x) ≡
∫ ∞

0
FGBW

g (x)dκ2 (28)

resembles the standard collinear distribution xgDGLAP
(x, µ2) for small factorization scale µ2 ∼ 1 GeV2. The
latter, when substituted into the standard leading-order
formula, also leads to a small total cross section of the
order of 1 pb. A reasonable total cross section is obtained
provided µ2 ∼ M2

H . Although gDGLAP(x, µ2 = 1 GeV2)
leads to a reasonable description of F2 at Q2 ∼ 1 GeV2, it
cannot be directly (without DGLAP evolution) used for
Higgs production. In this context the scale-independent
GBW distribution should be understood as an initial con-
dition for QCD evolution rather than an universal object
to be used in different high-energy processes.

Different UGDFs constructed in order to describe
the total cross section for the γ∗p process give quite
different predictions for the Higgs production. This, as
will be discussed below, is not completely surprising.
While the γ∗p total cross section is sensitive to the in-
tegral

∫
dk2

t fg(x, k2
t (, µ2)), the Higgs boson transverse-

momentum distribution samples details of the unintegrated
gluon distributions. As discussed in the previous section,
in the case of Higgs boson production the inclusive cross
section is a convolution of two UGDFs. In general, exclusive
reactions are a much better place for testing UGDFs. In this
sense the standard procedure to constrain UGDFs through
describing the F2 HERA data does not seem very effective.

In order to understand the situation somewhat bet-
ter in Fig. 6 we show the corresponding average values
of sampled transverse momenta as a function of Higgs
transverse momentum. At y = 0, by symmetry require-
ment, 〈κ1〉 and 〈κ2〉 are identical. It is not the case for

Fig. 6. Average gluon transverse momentum as a function of
Higgs transverse momentum at LHC energy W = 14 TeV for
different UGDFs from the literature

Fig. 7. Rapidity distribution of
Higgs at LHC energy W = 14 TeV
for different UGDFs from the lit-
erature

y = 3. Rather similar results are obtained with differ-
ent UGDFs. At very small Higgs transverse momenta one
tests κ ∼ 1 GeV. At large Higgs transverse momenta and
y = 0 we get 〈κ1〉 + 〈κ2〉 ≈ pt/2. Of course by symmetry
〈κ1/2〉(−y) = 〈κ2/1〉(y).

Some examples of inclusive rapidity distributions are
shown in Fig. 7. Even here the differences between different
UGDFs are clearly visible. Above |y| > 3 only the resumma-
tion distribution (thin solid line), the Kwieciński distribu-
tion (thick solid line) and the Kimber–Martin–Ryskin one
(dotted line) are applicable by construction. The other dis-
tributions were obtained by extending the generally small-x
gluon distributions above x > 0.1 by multiplying the orig-
inal formulae by (1 − x)n. The power n = 5–7 was found
recently in the production of cc̄ pairs in photon–proton
scattering at low energies [4]. In the present paper we used
n = 7. Small differences may be expected only at the very
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Fig. 8. Average gluon transverse momentum 〈κ1〉 or 〈κ2〉 as
a function of Higgs rapidity for different UGDFs from the
literature. In this calculation pt < 40 GeV

Fig. 9. Dependence of the result on the choice of the factor-
ization scale for the Kwieciński UGDF for y = 0 (left panel)
and y = 3 (right panel). In this calculation a Gaussian form
factor with b0 = 1 GeV−1 was used

edges of the phase space, i.e. in the region we are not
interested in here.

For completeness in Fig. 8 we show the average values of
the gluon transverse momenta 〈κ1〉 and 〈κ2〉 as a function
of the Higgs-boson rapidity. At midrapidity by symmetry
〈κ1〉 ≈ 〈κ2〉. The average values strongly depend on the
UGDF used and on the region of rapidity. The asymme-
try of the average values of the transverse momenta at
forward/backward regions are closely related to Fig. 3 due
to correlation of the transverse momenta with longitudi-
nal momentum fractions. Generally, the smaller x1 (x2)
the larger 〈κ1〉 (〈κ2〉). The details depend, however, on the
specific version of the gluon dynamics. The extremely small
average transverse momenta for the GBW UGDF can be
understood in the light of the discussion above.

How important is the choice of the factorization scale
in our calculations with the Kwieciński UGDF? In Fig. 9
we show results obtained with quite different choices of fac-
torization scale and with b0 = 1 GeV−1. There is very little
effect if the factorization scale is increased from our can-
nonical value µ2 = M2

H . There is, however, a sizeable effect
if the factorization scale is decreased drastically, especially
at pt > 50 GeV. The factorization scale dependence in our
case seems somewhat weaker than in a recent work [20].

It is particularly interesting to compare the results ob-
tained with the Kwieciński unintegrated gluon distribu-

a

b

Fig. 10. A comparison of two-dimensional distributions of
the Higgs boson for a the Kwieciński UGDF, b the LO b-
space resummation

Fig. 11. A comparison of the Higgs transverse-momentum
distribution calculated with the Kwieciński UGDF (red, solid)
and the LO b-space resummation (black, dashed) for different
rapidities: y = 0 (left panel) and y = 3 (right panel)

tions with those obtained from the standard soft gluon
resummation method. In Fig. 10 we show two-dimensional
distributions in (y, pt). The distribution obtained with the
Kwieciński UGDF decrease less rapidly with the Higgs
transverse momentum than the distribution obtained in
the standard soft gluon resummation. This is partially
due to the different choice of the factorization scale in
both methods.

A more detailed comparison is made in Fig. 11 where
we have selected two rapidities y = 0 and y = 3. While
at y = 0 the result obtained with Kwieciński distribu-
tions and that obtained within the standard resummation
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Fig. 12. Decomposition of the transverse-momentum distribu-
tion of Higgs boson at LHC energy W = 14 TeV and −1 < y < 1
into four regions specified in the text. The thick solid line is a
sum of all 4 contributions: thin solid lines for region I, dashed
lines for region II + III, and dotted lines for region IV

method almost coincide, they become quite different at
y = 3 and pt > 60 GeV. However, the applicability of both
methods at large transverse momenta is not obvious. The
result for y = 3 at large transverse momenta obtained with
the Kwieciński UGDF seems more trustworthy than that
obtained within the standard resummation method. The
problems of the standard resummation method at large
transverse momenta may be caused by some somewhat
arbitrary prescriptions used as discussed in Sect. 2.

In order to better emphasize the differences between
different UGDFs we separate the contributions to the inte-
gral in (6) from four different disjoint and complementary
kinematic regions:
(I) κ1 < pt and κ2 < pt ,
(II) κ1 < pt and κ2 > pt ,
(III) κ1 > pt and κ2 < pt ,
(IV) κ1 > pt and κ2 > pt , where κ1 and κ2 are the trans-
verse momenta of the last gluons in the ladders and pt is
the transverse momentum of the produced Higgs boson.
In Fig. 12 we present the decomposition of the Higgs cross
section dσ

dpt
into those four regions as a function of the Higgs

transverse momentum. Here we limit ourselves to midra-
pidities (−1 < y < 1) only. In the case of the Kwieciński
UGDF, first the Fourier transform from the b-space to the
κt-space was calculated and the results were stored on the
grid in x and κ2

t . The grid was used then for interpola-
tion when using formula (6) with the extra conditions on
the transverse momenta specified above. It is interesting

Fig. 13. Decomposition of the ra-
pidity distribution of Higgs bo-
son at LHC energy W = 14 TeV
and into the four regions speci-
fied in the text. In this calculation
pt < 40 GeV. The thick solid line
is a sum of all 4 contributions: thin
solid lines for region I, dashed lines
for region II or III, and dotted lines
for region IV

to note that at larger transverse momenta the contribu-
tions from regions II, III and IV are completely negligible.
The other contributions are important only at very low
transverse momenta. For completeness in Fig. 13 we show
a similar decomposition as a function of rapidity. In this
calculation we have limited Higgs transverse momenta to
pt < 40 GeV. The contribution of region I dominates at
midrapidities. The contribution of the asymmetric (in κ1
and κ2) regions II and III becomes important at very for-
ward or very backward Higgs production. The contribution
of region IV is negligible almost everywhere. The propor-
tions of contributions corresponding to the four specified
above regions differ significantly for different UGDFs.

3.2 Estimates of higher-order effects

In the present paper we have limited ourselves to the
leading-order approach only. This was dictated by the fact
that until now only a leading-order approach was used to
describe the HERA data in terms of UGDFs. Furthermore
the consistent next-to-leading order analysis is rather com-
plicated. We leave the next-to-leading order analysis for
a future study. Instead, we wish to visualize (estimate)
the NLO corrections in a similar soft gluon resummation
approach where the relevant formalism was worked out in
detail [21]. In Fig. 14 we present the relevant soft gluon
resummation K-factor as a function of Higgs transverse
momentum for −0.5 < y < 0.5 (panel a) and 2.5 < y < 3.5
(panel b). In this calculation the Gaussian form factor (see
(13)) with b0 = 1 GeV−1 was used. The dashed line includes
only gluonic NLO corrections to the partonic function, the
dotted line exclusively the quark NLO corrections and the



132 M. �Luszczak, A. Szczurek: UGDFs and Higgs production

Fig. 14. NLO K-factor in the soft gluon resummation for-
malism as a function of the Higgs transverse momentum for
two different bins of rapidity. The dashed line corresponds to
separated gluonic contributions, and the dotted line to sepa-
rated quarkish contributions. The solid line is for both effects
included simultaneously

Fig. 15. NLO K-factor in the soft
gluon resummation formalism as
a function of Higgs rapidity. In
this calculation pt < 80 GeV. The
meaning of the curves here is the
same as in the previous figure

solid line includes all NLO effects altogether. At midrapidi-
ties the gluonic effects are absolutely dominant and enhance
the leading-order cross section by about 80%. The quark
corrections are at the level of 1% and can be numerically ne-
glected. They become sizeable (of the order of 10%) at very
forward and very backward rapidities. In Fig. 15 we present
a corresponding K-factor (K = NLO/LO) as a function of
the Higgs rapidity. In this calculations pt,H < 80 GeV was
assumed. Summarizing, to a good approximation the NLO
soft gluon resummation corrections result in multiplying
the LO cross section for Higgs production by a factor of
about 1.8.

Up to now we have concentrated on relatively small
Higgs transverse momenta. At high transverse momenta
the standard 2 → 2 mechanisms take over. The cross sec-
tion for perturbative 2 → 2 processes with Higgs in the
final state is shown in Fig. 16. The gg → Hg dominates at
small transverse momenta and midrapidities. The qg → Hq
and gq → Hq become comparable to the first contribution
at large transverse momenta and forward and backward
regions, respectively. The contribution of qq → Hg is neg-
ligible all over the interesting part of the phase space.

3.3 Weak boson fusion versus gluon–gluon fusion

The weak-boson fusion is known to be another important
ingredient in the total (integrated) cross section for Higgs
boson production [14]. It is interesting to ask: what is the
interrelation between the two dominant contributions in
rapidity and transverse momentum of the Higgs boson? In
Fig. 17 we present such a two-dimensional spectrum. This
spectrum is very different from those for the gluon–gluon

a b

c d

Fig. 16. Contributions of different subprocesses of
the 2 → 2 type for W = 14 TeV, respectively for
a gg, b qq, c qg and d gq
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Fig. 17. Two-dimensional distribution in y and pt of Higgs
from the LO WW fusion process. In this calculation we have
taken µ2

1 = µ2
2 = M2

H

Fig. 18. Transverse momentum distribution of the Higgs boson
at LHC energy, W = 14 TeV and y = 0 (left panel) and y = ±3
(right panel) produced in WW fusion (overlaping thick solid and
thick dashed for the two different prescriptions specified in the
formalism section), compared to the corresponding contribution
of gluon–gluon fusion: the BFKL (dash-dotted), the Kwieciński
(thin solid) UGDF, LO soft gluon resummation (dashed) and
the perturbative 2 → 2 collinear contribution (thin dotted)

fusion. In particular, the maximum of the cross section at
pt slightly larger than 50 GeV is visible. It is interesting if
the contribution of weak-boson fusion can exceed in some
corner of the phase space the gluon–gluon contribution. In
order to quantify the effect in Fig. 18 we present dσ

dydpt
as a

function of the Higgs transverse momentum for y = 0 and
y = ±3. The contribution of the WW fusion falls off much
faster for y = ±3 than for y = 0. The results are almost
independent of the choice of the factorization scale. These
results almost coincide (compare thick solid (prescription
(i) above) and overlaping thick dashed (prescription (ii)
above) lines). For comparison we present a few examples of
the gluon–gluon fusion with the BFKL (dash-dotted) and
Kwieciński (thin solid) unintegrated gluon distributions
and the standard resummation method with Gaussian form
factor and b0 = 1 GeV−1 (dashed). We find that depending
slightly on UGDF and rapidity, above pt ∼ 50–100 GeV
the WW fusion mechanism dominates over the gluon–gluon
fusion mechanism. However, the 2 → 2 processes (dotted
line) are large, especially at midrapidities. Only at large
rapidities and pt > 150 GeV the WW fusion seems to

dominate over the other processes. However, there the cross
section is rather small. Whether this opens a possibility to
study the WWH and similarly the ZZH couplings requires
further studies.

4 Conclusions

In the present paper we have presented predictions for the
inclusive cross section for the Higgs boson production at
the LHC energy W = 14 TeV, obtained with the help of
the different models of unintegrated gluon distributions
used recently in the literature. Almost all the UGDFs dis-
cussed here were obtained based on the analysis of low-x
HERA data for virtual photon–proton total cross sections.
Although they are almost equivalent in the description of
the HERA data, quite different results have been obtained
for Higgs production. While the structure function data are
sensitive to rather low transverse momenta of the gluon,
in the Higgs production, in principle, one could sample the
not yet explored region of large transverse momenta (at
large scales). One should remember that the Higgs produc-
tion even at large LHC energy is not completely a small-x
phenomenon. The analysis of very forward or very back-
ward Higgs boson production, in principle, could open a
possibility to study UGDFs in a completely unexplored
region of large x. This task, however, is by no means easy,
as in this region of phase space “small-x” and “large-x”
physics are entangled.

We have shown that for all UGDFs discussed here the
inclusive cross section is dominated by the configurations
with transverse momenta of the gluons smaller than the
transverse momentum of the Higgs (κ1 < pt and κ2 < pt).

Finally we wish to emphasize that the whole potential
to study the UGDF in the Higgs production discussed here
is at present only conditional as it implicitly assumes the
existence, discovery and good identification of the Higgs
boson in the future experiments at LHC. We do not need to
mention that all this would not be possible if the Higgsless
scenarios (see e.g. [35] and references therein) turned out to
be true. Even if the Higgs boson is discovered at LHC the
statistics may not be sufficient for precise tests of UGDF.
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